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Abstract. The semiclassical expression for the transmission probability of a complicated 
multidimensional resonant tunnelling structure is obtained. This expression generalizes the 
well known Breit-Wignrr formula and allows an analytical study of various structures 
containing electrodes and quantum dots. It is proved that the resonant conductance of a 
structure with N quantum dots cannot exceed N (in units of 2e2/k). It is also shown that 
the resonant conductance of an arbitrary structure containing a quantum dot with non- 
degenerate levelconnected inseries withallotherscannot exceed unity. The resultsobtained 
are applied to the analytical calculation of devices with n few quantum dots and chain and 
closed chain devices. The effect of the disappearance of the resonant peak corresponding to 
a well defined level is demonstrated. For a large number of identical dots in some examples 
considered. the conductance has a double-peak form in the individual energy band. This 
result is shown to have a clear physical meaning. 

1. Introduction 

Progress in the fabrication technology of nanometre structures allows one at present to 
make nanometre resonant tunnelling devices not only in one [l] but also in two or three 
dimensions [Z, 31. Such devices, created on the basis of semiconductor heterostructures 
combined with metallic or semiconductor dots and strips, have prospects for future 
electronics. Therefore, theoretical investigation of their electrophysical properties and 
modelling of new, more complicated, resonant tunnelling devices is of considerable 
interest. 

The structure of the devices that are investigated in the present paper is shown in 
order of complication in figure l(b)-(f). Electrodes and quantum dots are shown 
cross-hatched. The simplest artificial resonant tunnelling structure in this sequence 
(shown in figure l(a)) was created for the first time in [Z] and theoretically investigated 
in several papers [4-71. As for other more complicated structures, they are likely to be 
created in the not-too-distant future, owing to the high-speed development of nano- 
technology. For example, the techniques of growing nanometre semiconductor struc- 
tures localized in more than one dimension [SI, and techniques of local band bending in 
semiconductor films by superimposed metallic strips under voltage [3], should be useful 
for multidimensional band engineering. Such technology does not need atomic size 
accuracy, since the wavelength of electrons in semiconductors has a nanometre order. 
Nanometre metallic dots and strips can be superimposed on a semiconductor film also 
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Figure 1. Different configurations of quantum 
dots and electrodes considered. 

by scanning tunnelling microscope (STM) technology. Another method of using the STM 
in nanometre device creation consists of making shallow indentations by displacement 
of substrate atoms [9,10]. Such indentations, when covered by conducting material and 
subjected to a voltage, can be used for electrostatic multidimensional band bending in 
a semiconductor film disposed under the surface of the substrate. The formation of both 
polymeric molecules and a few atoms with resonant levels must also be mentioned as 
possible nanometre resonant tunnelling structures [ll]. 

The three-dimensional resonant tunnelling system of model zero-radius quantum 
wells displaced in a rectangular potential barrier was studied theoretically in [U]. 
Resonant tunnelling through two-dimensional arrays of model quantum dots was inves- 
tigated numerically in 113,141. In [13] interestingpredictions weremade for the possible 
upper value of conductance as a function of the concrete configuration of the system. 
The expression for the transmission probability obtained in the present paper permits a 
study of rather complicatedstructuresinanalytical form. InsectionZwegive thegeneral 
semiclassical expression for the transmission probability, generalizing the Breit-Wigner 
formula for the case of many quantum dots with interacting resonant levels and many 
electrodes. In section 3 the general inequalities for the upper value of the conductance 
are proved. Sections 4 and 5 are devoted to the investigation of devices comprising a few 
quantum dots and chain and closed chain devices. In section 6 we discuss the results 
obtained. 

2. The initial equations 

Assume that the energy of incident electrons in an electrode is close to the defined 
number of levels {Ei} of the quantum dots { j } .  Thus only these levels will be taken into 
account in the resonant conductance calculations. Suppose also that the temperature of 
the system is zero and the process of resonant tunnelling is perfectly stationary and. 
coherent. 

The algebraic expressions obtained below for the penetrability of resonant tunnellig 
structures contain the energy of incident electrons E ,  the energy levels E, in the ith 
quantum dot, the partial width r:) of decay from quantum dot m to the neighbouring 
electrode n,  and the overlap integrals a,, for neighbouring dots i and j .  These expressions 
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are essentially the generalization of the well known Breit-Wigner formula for the 
conductance from electrode 1 to electrode 2: 

(1) 
r W )  

Glz  = ( E  - E,)? + (ry) + ryy 
which can be directly applied only to case ( a )  in figure 1. We measure the conductance 
in units of 2ez/h. The general form of expression (1) is independent of the dimensions 
of the system [4,15]. 

Let T,, be the transmission matrix from electrode m to electrode n. Consider the 
total transmission probability from electrode m to electrode n: 

where the trace and the product of the operators means integration over the initial and 
final states of scattering electrons. In the present paper we are dealing with multi- 
dimensional systems having a finite number of resonant levels. In [16] expression (2) 
was shown to be the conductance of such strongly localized systems having two probes 
(electrodes). In the principal examples of our paper (sections 4.3 and 5) two-electrode 
structures are investigated. It should be noted that expression (2) generally defines the 
total transmission probabilities, which play a fundamental role in many-probe system 
theory [17]. Below, we shall consider systems with many electrodes, but confine our- 
selves only to calculating G,,,. and investigating its properties, having in mind that for 
the two-electrode case G,,,. defines the conductance of the system. 

The expression for the values G,. is obtained by combining the techniques of 
calculation of a model system with zero-radius potential wells [12,18] and semiclassical 
techniques [15.19] based on the existence of the most probable tunnelling paths (MPTP) 
coupling electrodes and quantum dots. Consider the Hamiltonian 

G,, = TrVmnT!,,d (2) 

which describes a system of N zero-radius wells at points ri displaced in the relatively 
smooth barrier V(r) ,  which has a jump only at the surfaces of electrodes. 

The formula for the transmission probability G, from electrode m to electrode n 
can be obtained by straightforward generalization of methods [15] to the case of many 
quantum wells in the underbarrier region. As a result we have 

N 

G,, = Tr(r,Rr.R') = E Irikj*rjm)rp 
i.k-1 

where the trace means summing over all quantum dots and 
( r l o  . . .  o 

E =  

(4) 
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Here M is the total number of electrodes in the system, I is the unit matrix and r is the 
matrix of total width of the levels. The symmetric matrix E is the energy matrix, so that 
the equation det(El - E) = 0 defines eigenvalues of the system for r = 0. 

Thedeductionof (4) and (5)isbasedon thesemiclassicalassumption that thereexists 
only one MP'I?S,~ connectingdot (electrode) i with dot (e1ectrode)j. Thus both the partial 
widths ryl and the overlap integrals 6 ,  can be calculated in a small neighbourhood of 
the corresponding MPTP. First, normalized eigenfunctions yti must be calculated at 
quantum dot i without accounting for level broadening and splitting. Then, in order to 
calculate the partial width r'y) one must continue the eigenfunction vi along the MPTP 
sil. The flux of the corresponding outgoing wave at electrode j ,  averaged over a plane P 
transverse to the tunnelling direction, will give the value of rj'): 

where m is the electron mass. Similarly, 6, is defined as the overlap integral between 
functions ytt and yt,, continued along the MPTPS,~., over a plane P' transverse tos,,: 

We propose below that the parameters I'jJ) and 6, are known, having in mind that the 
method of their calculation wasdeveloped earlier [19,20]. 

In the multidimensional case the formulae (4) and ( 5 )  can be obtained, in analogy 
to (1) [15], by averaging the outgoing flux of the wavefunction over the momentum 
components of incident electrons in an emitter electrode (the energy E fixed), and by 
integratingit over the planetransverse to the tunnellingdirection in acollectorelectrode. 
Such averaging assumes that the characteristic distance a of the model potential inside 
electrodes and in the underbarrier region, except in quantum dots, satisfies the semi- 
classical condition ka 9 1 (k  is the characteristic absolute value of the wavenumber). 
The order of interference terms neglected in (4) and (5) is not more than (ka)-'. 

Note that equations (4) and ( 5 )  only contain structure parameters which are suf- 
ficiently common, have a clear physical meaning and are valid under broader conditions 
for quantum wells than assumed in (3). In analogy to the Breit-Wigner formula (l), 
these equations hold when the energy interval under consideration (in particular the 
values E, - E,), rk' and 6,  are small compared with characteristic values of energy in 
the individual quantum wells. 

3. Some general relations and inequalities for resonant tunnelling probability 

Now we are able to consider some general situations and to provide some important 
inequalities for conductance as a consequence of the expressions (4) and (5) .  

3.1. General inequality 

Obviously the transmission probability (4) can reach the value N for independent 
quantumdotswhend,, = 0.Itcanbeprovedthat G,, < Nalways. We proveaninequality 



Modelling of mnometre resonant tunnelling devices 2655 

@ @ @ @ @ @ @  

~ 

@ @ @ @ @ @ @ FigureZ.~iecasewhennvopartso€thestruFture 
contact ria one quantum dol only. 

that is slightly stronger. Let us choose two arbitrary but non-intersecting sets of elec- 
trodes namely SI and Sz. Then 

G,, sN. (6) 
,€SI n E S L  

The proof of (6) is given in appendix 1 

3.2. Well defined levels 

The levels of the structure are well defined if their widths are small compared to their 
separation. In this case the value Nin inequality (6) must be changed to unity. 

Assume that unitary transformation U diagonalizes energy matrix E so that 

U*EU = 

10 0 . . .  E, /  

If Eisvery near to non-degenerate level Eh (resonant approximation), then all elements 
of R are relatively small except rkk and we have 

E E G m n  = E gE) gC)/[(E - E h ) ’  f $(g~)’] s 1 (7) 
m E S ,  n E S Z  ,€Si n € S 2  

where g,, and giy) are elements of matrices U * r U  and U*r,U, respectively. Thus in 
the case of well defined levels (gM Q IEk - .El), the resonant conductance is given by 
the usual Breit-Wigner formula and cannot exceed unity. 

It is interesting to note that according to (7) the effect of the disappearance of a 
resonant peak corresponding to a definite level can be observed. It occurs when one of 
thesumsinthenumeratorin (7)vanishes.Anexampleofsuchaneffect willbeconsidered 
in section 4.3. 

3.3. Connection via one quantum dot 

The value N in (6) must be changed to unity also in another remarkable situation. 
Suppose that the structure consists of two non-intersecting sets of dots, D, and D,, which 
are connected only via one dot, as shown, e.g. in figure 2. Such a configuration is similar 
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to that appearing in the theory of the tunnelling microscope when the STM tip contacts 
the surface investigated via only one atom. Let SI and S2 now be the sets of electrodes 
connected only with dots D ,  and D2 respectively. Suppose that the connecting dot 
mentioned has number j = 0 and Rc') = llr$!) 11 is the matrix defined similar to R in (5) for 
the structure {&, Sk} assumed independent (i.e. for 6,  = 0). Then it can be shown that 

r(')6 r,K = X rj?6w X kp ap 
I E D i  P E D Z  

It is remarkable that R is expressed only via the elements of matrices R(kl and the 
parameters of the connecting dot. 

Instead of (6)  we now have: 

The proof of this important inequality is given in appendix 2. It is valid also when 
electrode SI contacts other elements of the system via one quantum dot only. 

4. Systems with a few quantum dots 

Let us apply the result of section 2 to the cases of one, two and three quantum dots in 
the underbarrier region. In analogy with classical electrical engineering theory, we are 
going to  consider the simplest parallel and series connections of quantum dots. In the 
quantum case there is no principal difference between parallel and series connections, 
and in general these notions are not applicable. Nevertheless, in the semiclassical 
situation considered the existence of MFTP makes these notions physically reasonable. 

4.1. One quantum dot 

The formulae (4) and (5) for N = 1 give the result found in [21]: 
G,, = rlm)ry)/(lE - E ,  1 2  + ari). 

4.2. Two quuntum dots 

Assuming N = 2 in (3)-(5) we have (see figure l(b)): 
1) (3)  1) (3) G , 3  = [ I E -  E~ - i $ r l  I2r: r2 + I E  - E~ - i4rz12rY)r:)) + q2(rI r2 

(3) (1) + r, r2 )]/I@ - El - i$,)(E - E2 - itr,) - S:, 1 2 .  
If the values r;l1 and rF1 are relatively small, then we come to the case of two successive 
quantum dots, which is essentially one-dimensional and was studied in several papers 
(see 112,221). Let the system be symmetric, so that rjl' = ry) = r a n d  E ,  = E2 = E,, 
and for simplicity F4) = F2) = 0 (parallel connection). Then 

I I 

cI3 = 2 r q ~  - E,)* + rz + S:,]/[(E - ~ , , ) 4  

+ 2 ( ~  - E0)2(r2 - ai2) + (r2 + 6:2)2]. 
It is easy to see now that two different situations appear. 
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(i) r2 < 3 6 t .  Then G13(E) has two maxima for 

= E ,  2 (r2 + a:,)1/4[2612 - (r2 + 6:,)1/2]@ 

so that 

G ~ ~ ( E ( ~ ) )  = r2/za12[(r2 + 6:2)1/2 - a,,] s 4. 

F0rT-t 0, thevaluesE(1*2)tendtotheeigenvaluesofthesystemEo * &,.The minimum 
of G13 is found for E = Eo. 

(ii) r2 > 36:,. Only one maximum is present in this case for E = Eo when 

G , ~ ( E ~ )  = 2r2/(r2 + 62) s 2. 

4.3. Three quantum dots 

The general formula for G,,,, in the case N = 3 (figure l(c)) is rather cumbersome. 
Therefore, let us simplify this case by making the following assumptions: 

The MPTP not neglected in calculations according to (10) are shown in figure l(c). Using 
the language of classical electrical engineering we may say that (10) describes quantum 
dot 1 connected in series with dots 2 and 3, which are parallel to each other. Then 

G,, = zr2a2/[(E - E,)' + 2 ( ~  - E o ) 2 ( f r 2  - 26,) + (tr2 + 
Two situations appear again. 

(i) T2 < 86,. Then Glz has two maxima for 

~ ( 1 . 2 )  = E, (262 - p ) I / z  

with the value of GI2 independent of r and 6, 

G12(E(JI) = 1 

and minimum 

G ~ ~ ( E , )  = zrzsz/(ar2 + 2 6 2 ) ~  s 1. (11) 

(ii) r > 86,. Only one maximum is present for E = Eo (see (11)). 
Note that the considered structure of three quantum dots for r-, 0 has three eig- 

envalues (E ,  and E, 2 21/26) but only two peaks appear in G12(E),  unlike the case of 
three series-connected quantum dots. Thus the example considered demonstrates the 
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effect of the disappearance of a peak corresponding to the level Eo. This effect was 
mentioned above (section 3.2). 

5. Devices with many quantum dots: chain and closed chain 

In this section devices with N quantum dots are considered. The expression for the 
conductance is obtained for finite N ,  and then the limiting case N % 1 is examined. 

5.1. Chain of quantum dou 

Consider a chain of quantum dots whose beginning and end are connected with elec- 
trodes 1 and 2 respectively (figure l(d)). Under the assumptions made we can put 6,, = 
0 for l j  - kl > 1 (tight-binding approximation). Then it can be obtained that 

It is clear that this expression, as in the one-dimensional case, cannot exceed unity. This 
fact also follows from the inequality (9). 

Let all the dots be identical, E, = Eo, and all the overlap integrals for neighbouring 
dots be equal to  each other, SI,,+, = 6. Let the level widths of all the dots except the first 
and the last be equal to zero and rl = r:" = rN = rg) = r. Then after long algebra we 
have the result obtained in [22]: 

G12 = 2rza2 sin2 ru/{d+ + d-  cos[(2N - 2)a + p]} (13) 
with 

a = cos-][@ - E")/26] 

d" = (a2 + tr2)2 -c r2h2 sin2 a. 

This expression is valid for all N, even for N = 1. Formally it is valid for E - Eo < 26, 
but it can be extended to all E by analytical continuation?. For large N the value of GIZ 
outside the allowed band ( E ,  - 26, Eo + 26) is exponentially small. 

The maxima of expression (13) are reached when cos[(2N - 2)ru t p] = 1. All of 
them are equal to unity. 

Consider the case N % 1. Then averaging (13) over N a  we have 

p = 2 tan-' [6* sin(Za)/(6* cos(2cy) t P)] 

(GI*) = T6 sin a/(@ + Wz). (14) 

The maximum of (G,d, equal to unity, is reached for I? = 26 and E = Eo (see figure 
3W). 

5.2. Closed chain in series bemeen hvo electrodes 

The case of a closed chain device with identical quantum dots (Ei = E,) demonstrates 
different features of conductance from the previous case. We again assume that ai,+ = 
6. The total number of dots in the closed chain considered is now 2N. Electrodes 1 and 

* As well as the formulae for GI2 in sections 5.2 and 5.3. 
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Figure 3. The dependence of mnductance (dots) 
and average conductance (curves) on energy E in 
the interval ( E ,  - 26. Eo t 26) for the structures 
shown in (a) figure l(d), (b)  figure l(e) and (c) 
figure l(f). In cases (a )  and (b)  we put i-16 = 1 
and the totalnumberofdotsinthestructureequal 
to 10. In case (c) the conductance is calculated 
according to formula (19) and r/6 = 
2 exp(k - 3). k = 1.2.3.  

2 contact only with dots 1 and N + 1 respectively (figure l(e)); moreover, the values 
Ty) = rgil = r a n d  all other values ry) = 0. Then the conductance is 

G12 = 16r26* sin2 ( ~ / [ ( f + ) ~  + ( f - )4  - 2(f+f)2 cos(2Na)] 

f' = 26 sin a t r / 2  

(15) 
with 

CY = cos-L[(E - E0)/2S]. 

The maxima G12 = 1 are now reached if the condition cos(2Nc~) = 1 holds. 
For N 9 1 the average value of T12 over N(Y has the form 

(G12) = 2 r 6  sin a/(4S2 sin' (Y + K2) .  (16) 
Thus, unlike the previous case, the expression (16) for r < 46 has two maxima equal to 
unity and a minimum between them (see figure 3(b)). For very small r the value (G12) 
is a small constant r/26 inside the allowed energy band and has sharp peaks with 
maximum equal to unity on its boundaries. For r > 46 the form of (GI& is similar to the 
one shown in figure 3(a). 

5.3. Closed chain in parallel between two ekctrodes 

Let us now examine a system of Nidentical dots forming a closed chain lying in a surface 
parallel to the surfaces of electrodes 1 and 2 (figure l(f)). Assuming that Sj.i+l = S, 
r. = r(') + I?) and r!l) = r(2) = r, we have for N 3 

' I  I I i 
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with 

q = - cos a - sgn(E - Eo)r-  + i(r/26 + r + )  

rt = 2-m {[(sin2 a + r2/462)2 + r2/6? cos2 all/? * (sin2 a + r2/462)}1/2 

a = cos-’[(E - E,)/26] .  

For independent quantum dots, when 6 Q r, this formula gives the Breit-Wigner 
result, summing the conductances of individual dots: 

c12 = N T ~ / [ ( E  - E ~ ) *  + r*]. 
The procedure of averaging C,,(E) for N B 1 now depends on the relation between 

6, r, Nand E - Eo. since the width of a level in every dot of the considered system is 
finite. Actually, if I’Q 26 sin a then 

q = exp[-ia + r/(26 sin a)] 

and the absolute value of q is near to unity. Nevertheless for large N the value of qN in 
(17) may be large or may have an order of unity. Let us consider the situations when 
N B 1. Then the last item in (17) is relatively small. 

(i) If r is so small that [ q  1- - 1 Q 1 (or NT Q 6 sin a) then 

(GI2) = NT/(26sin a). (18) 

Under the assumptions made, this expression is much smaller than unity. The function 
(G12(E)) hasa minimum in the centre of the allowed band and maximanear its boundaries 
where (18) fails. 

(ii)IntheoppositecaseIqI”> 1 (orNT* Ssin a)itiseasytofindfrom(17)without 
averaging that 

GI2 = N r 2 1 q 1 2 ( l q l ’  + 1)/6Vq12 - l)l$ - 112. (19) 

The function G 1 2 ( E ) / N  for different r/6 is shown in figure 3(c). If r < 26 then two 
peaks exist. Unlike in figure 3(b) the corresponding maxima vanish for small r/6. For 
r Q 6 sin a, we obtain that GI2 is equal to Nr/(26 sin (U) and coincides with the average 
value (18) of case (i). 

(iii)SupposeanintennediatecasewhenrQ 6sin aandIqIN>l l(orNT 5 6sina). 
Then the average value (G1J is defined by (18) again and may have an order much 
smaller than N. The maxima of G12 are now found from 

4 N .  
s(es + 1) Nr 

GI? = > 2  s = (G12) =- es - 1 26 sin a 

I fs  (or r) is small, then max GI, tends to its minimum value equal to 2. This does not 
contradict the general result (7) because most of the levels of a closed chain (except one 
or two of them) are doubly degenerate in the approximation considered. 
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The different behaviour of the average conductance dependence via E in the cases 
considered (single- or double-peak form) has a clear physical meaning discussed in the 
next section. 

6. Results and discussion 

With the help of the semiclassical expressions (4) and (5) obtained, we have found some 
remarkable features of the conductance and investigated analytically several models of 
resonant tunnelling devices. 

In general, the resonant tunnelling conductance of a structure with N quantum dots 
cannot exceed N, but the concrete configuration of the quantum dots restricts the 
possible upper bound of the conductance to a smaller value. According to inequality (9) 
the conductance of the structure containing a dot connected in series with all others 
cannot exceed unity. It seems that a more general inequality can be proved: if there are 
k such dots, then the conductance cannot exceed k. 

In the case of well defined levels, when their widths are small compared to their 
separation, the resonant conductance is given by the usual Breit-Wigner formula and 
cannot exceed unity. The unitary transformation that diagonalizes the energy matrix E 
may give a very small (or zero in the approximation considered) value of one of the sums 
in the numerator of (7). Then the effect of the disappearance of the resonant peak 
corresponding to a given level appears. Such an example was considered in section 4.3 
for the case of three quantum dots. It can be shown that the indicated effect cannot 
appear for the case of two quantum dots. 

The comparison of the results in sections 5.2 and 5.3 shows once more the non- 
triviality of inequality (9). Owing to double degeneracy of most of the levels in a closed 
chain, it is natural to suppose that for a well defined level the maximum value of the 
conductance is equal to 2. In section 5.3 such a result really occurs but, owing to (9), it 
cannot occur in section 5.2. The latter can be understood in detail if we consider, in 
addition to section 3.2, the situation when one of the levels is doubly degenerate 
(distinguish this situation from the case when the level is degenerate in the individual 
quantum well and the expressions (4) and (5) fail). We shall not dwell here on this 
consideration. 

One can see that inequalities (6), (7) and (9) fail when the semiclassical condition 
for the width of potential barriers is not fulfilled. In reality, if the potential barriers 
vanish, then the motion in the potential well becomes more and more delocalized and 
in general an arbitrary flux of electrons can be passed. 

In section 4 we have pointed out the limiting situation of identical quantum dots with 
N P 1 when an allowed energy band appears (chain and closed chain devices). It was 
shown that the averaged conductance dependence in the energy band might have single 
or double maxima. In order to explain the double-peak behaviour of the conductance, 
let us consider the case when r is small and the levels of the structures are well defined 
(see section 3.2). Let us calculate their widths. For the simple chain of section 5.1 we 
have the formula obtained in [22]: 

gkk = 4rsin2ak/(N + 1) a k  = a lE=~.X .  (20) 

gkk = 2r/N. (21) 

For the case of the closed chain of section 5.2: 
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And for the case of the closed chain of section 5.3: 
gkk = 2r. 

Here k is the number of the level. It is inkportant that the widths (21) and (22), unlike 
(20), are independent of the number of eigenvalues of the chain. One can understand 
this fact if it is mentioned that the decay channels in the simple chain considered are 
longitudinal to the motion of electrons in the chain. On the contrary, in closed chains 
they are all transverse to the indicated motion. 

According to (7) for allof the cases theconductanceisexpressed by theheit-Wigner 
formula 

G ( h )  
12 = Y k k ? h h ) * / [ 4 ( E  - 'r k ? k k ) ' ]  

where yk = 1 for sections 5.1 and 5.2, and y k  = 2 for section 5.3. 
For large N the eigenvalues of the chain, according to (13) and (15), are given by 

Ek = Eo + 26 cos(d/N) (or ax = cos-'(nk/N)). 

Hence the density of states (degeneracy of the levels in closed chain not taken into 
account) is 

The value (23) is very large near the boundaries of the allowed energy band. And this is 
just the cause of double-peak appearance in average conductance. Actually it is easy to 
find that for small r 

Thus, two factors are multiplied here: the density of states and the average intensity of 
energy peaks of the individual levels. In the case of a simple chain, the value ghh 
vanishes quicker than dk/dEgrows near the boundaries of the allowed band, and so the 
conductance vanishes there. But for the closed chain the widths (21) and (22) are 
independent of the eigenvalue number and a peak arises near each of the band bound- 
aries. 

Finally, let us compare the results obtained for a chain with the results for a one- 
dimensional double-barrier structure with a wide rectangular well. In the latter case the 
density of states near the bottom E, of the well is proportional to ( E  - Ec)-'/2. which is 
perfectlysimilar to(23).But theaverageintensity(thewidth)ofthelevelsisproportional 
to (E - .Ec)'/*. Thus in this case the conductance near the bottom of the well neither 
vanishes nor has any peculiarity. 

Appendix 1 

In order to prove (6) first let us prove the inequality 
R-l(r(l))-l(Rt)-l  - r(2) 3 0  

with 

m r(k) = r 
"€SI 

(Al . l )  
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where ')' for matrices means 'positive definite' [U]. Actually, ifx is an arbitrary complex 
vector then using (5) we have 

x%[R-l(r(l))-l(Rt)-l - r(z)]x 

=x * [( EI - E)(I-(l))-yEi- E) + +r(r(yr  - r q x  
aX*[ir[r(1))-1r - rqxao.  (A1.2) 

Here the first inequality is a consequence of the positive definiteness of matrix 
(El - E)(r('))-I(El- E) (matrix (I?('))-' being positive definite and El - E being sym- 
metric). The second inequality is easy to verify, the matrices r and r(k) being diagonal, 
positive definite and satisfying the inequality r 2 r('1 + r('). 

Applying the transformation R(. . .)Rt to (Al.l) we have 

(r(l))-l - Rr(2'R' 3 0, W . 3 )  

The trace of the product of positive definite matrices is positive [U]. Let us multiply 
(A1.3) by positive definite matrix r(l). As a result we have 

Tr(l - FWT[2)R') 3 0. (A1.4) 

This inequality is obviously equivalent to (6). 

Appendix 2 

Letusproveinequality(9). Substitute@) into(4). Itisnotdifficulttoshowthat(9) holds 
for all E - Eo if 

(A2.1) 

where 

rcri = E r m .  
mESX 

Matrices Im R@) are negative definite since for arbitrary real vectorx we have 

XIm R(')x= -Im(x(R(h))*x) = -Im(xR("(R(h))-l(R(X))*~) 

= - Cyr(kJy  + zr(k)z] 5 o (A2.2) 

wherey = Re(R(')x), z = Im(R(K)x). To obtain (A2.2) we used 

= 2 Im[(R(h))-l]. (A2.3) 

According to (A2.2) each of the two sums on the left side of (A2.1) is negative. After 
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applying the inequality for arithmetic and geometrical averages to them we see that in 
order to prove (A2.1) it is sufficient to prove the inequality 

fork = 1.2. But (2.4) is an equality due to (A2.3) and to the easily verified relation 

2Im R") + Re(R(k)I'ck)(R(k))*) = 0. (A2.5) 
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